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Voronoi tessellation of the packing of fine uniform spheres

R. Y. Yang, R. P. Zou, and A. B. Yu*
Center for Computer Simulation and Modelling of Particulate Systems, School of Materials Science and Engineering,

The University of New South Wales, Sydney, NSW 2052, Australia
~Received 21 November 2001; published 3 April 2002!

The packing of uniform fine spherical particles ranging from 1 to 1000mm has been simulated by means of
discrete particle simulation. The packing structure is analyzed, facilitated by the well established Voronoi
tessellation. The topological and metric properties of Voronoi polyhedra are quantified as a function of particle
size and packing density. The results show that as particle size or packing density decreases,~i! the average
face number of Voronoi polyhedra decreases, and the distributions of face number and edge number become
broader and more asymmetric;~ii ! the average perimeter and area of polyhedra increase, and the distributions
of polyhedron surface area and volume become more flat and can be described by the log-normal distribution.
The topological and metric properties depicted for the packing of fine particles differ either quantitatively or
qualitatively from those reported in the literature although they all can be related to packing density. In
particular, our results show that the average sphericity coefficient of Voronoi polyhedra varies with packing
density, and although Aboav-Weaire’s law is generally applicable, Lewis’s law is not valid when packing
density is low, which are contrary to the previous findings for other packing systems.

DOI: 10.1103/PhysRevE.65.041302 PACS number~s!: 81.05.Rm, 61.43.Bn, 61.43.Gt, 81.20.Ev
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I. INTRODUCTION

Fine particles ranging from 100 down to 0.1mm are im-
portant to many industries, including mineral, materia
pharmaceutical, and chemical industries. For those partic
cohesive forces such as the van der Waals force and
electrostatic force are dominant@1,2#. Consequently, their
packing behavior is quite different from that of coarse p
ticles @3–5#, and understanding of the underlying physics
terms of forces and structure is necessary in order to prod
results of wide application. However, at present it is e
tremely difficult, if not impossible, to study experimental
the packing structure of fine particles and quantify direc
the effect of the cohesive forces. Computer simulation
been an attractive alternative. This is particularly true in
cent years because of the use of the so-called discrete
ment method~DEM! @6#. By this method, particle packing
can be readily studied as a dynamic process, consistent
common practice in reality@7,8#. Recently, we successfull
simulated the packing of fine particles by incorporating
van der Waals force into the DEM@9#. Our simulated rela-
tionship between packing density and particle size agr
well with that measured. We also analyzed the packing st
tures in terms of the commonly used structural parame
such as radial distribution function~RDF! and coordination
number.

A further analysis of the packing structure can
achieved by quantifying the metric and topological prop
ties of the Voronoi polyhedra@10# ~also called Dirichlet cells
in two dimensions@11#!. Such analysis is very useful as
can provide information much richer than the on
dimensional~1D! RDF that has eliminated by averaging th
three-dimensional nature of a packing of particles@12#. Since
the work of Bernal@13# and Finney@14#, the Voronoi tessel-
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lation has been widely accepted as a powerful tool to st
the structure of disordered system. In fact, it has been
rectly used in the study of transport properties, e.g., effec
thermal conductivity of porous media or composite sol
@15–17#. The Voronoi tessellation has been extended to
packing of multisized spheres@18,19# or nonspherical par-
ticles @20#. Recently Ogeret al. @21,22# performed a rather
comprehensive investigation of the topological and me
properties of Voronoi polyhedra as a function of packi
density. Their packings were built numerically through ra
dom sequential adsorption~RSA! and modified Powell algo-
rithm where forces between particles were not considere

In this paper, we apply the Voronoi tessellation to analy
the packings of fine particles ranging from 1 to 1000mm.
Different from Ogeret al. @21,22#, our packings are gener
ated by means of a DEM-based model and hence more
lated to the packing of fine particles in reality. We quant
the topological and metric properties of Voronoi polyhed
and their variation with particle size or packing density.

II. SIMULATION METHOD

A packing is constructed through DEM in which the m
tion of individual particles and their interaction with eac
other are traced@6,9#. This motion is governed by the conta
forces, the van der Waals force, and the gravity, as illustra
schematically in Fig. 1. The displacement of particlei of
radiusRi and massmi in a time step can be computed bas
on Newton’s second law of motion given by

mi

dvi

dt
5(

j
~Fi j

n 1Fi j
s 1Fi j

n !1mig ~1!

and

I i

dvi

dt
5(

j
~Ri3Fi j

s 2m rRi uFi j
n uv̂i !, ~2!
©2002 The American Physical Society02-1
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wherevi , vi , and I i are, respectively, the translational an
angular velocities, and the moment of inertial of particlei;
Fi j

n , Fi j
s , andFi j

n represent, respectively, the normal conta
force, the tangential contact force, and the van der Wa
force imposed on particlei by particlej. The first part of the
right-hand side in Eq.~2! is the torque due to the tangenti
forceFi j

s , whereRi is a vector running from the center of th
particle to the contact point with its magnitude equal to p
ticle radiusRi . The second part is the rolling friction torqu
T i j

r arising from the elastic hysteresis loss and tim
dependent viscous dissipation@23,24#, andm r is the coeffi-
cient of rolling friction. This friction resistance has bee
demonstrated to play a critical role in achieving physically
numerically stable sandpile, viz. the unconfined packing
particles@25#. Table I gives equations used to calculate t
forces. More detail can be found from our previous paper@9#.

A packing was formed with 5000 particles in a rectang
lar box of width 15 particles in diameter, larger than the b
of width 10 particles diameter used in our previous work@9#
to improve the accuracy and statistical reliability of the
sulting Voronoi polyhedra. Periodical boundary conditio
were

FIG. 1. Schematic illustration of the forces acting on particli
from contacting particlej and noncontacting particlek.
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applied along two horizontal directions to avoid the late
wall effect. The simulation was started with particles dispe
ing homogeneously without overlap in the box. Then, t
particles were allowed to settle down under gravity and d
ing this densification process, they would collide with neig
boring particles and bounce upward or downward. This
namic process ended when all particles reached their st
positions with an essentially zero velocity as a result of
damping effect for energy dissipation. This packing proc
is equivalent to a physical operation to transform a fluidiz
bed to a fixed bed by stopping gas supply. The simulati
were performed for monosized particles, with their diamet
ranging from 1 to 1000mm. Totally, seven packings wer
used for the present analysis as listed in Table II.

III. RESULTS AND DISCUSSION

We considered the following properties resulting from t
Voronoi tessellation.

~a! Number of edges for each polyhedron face.
~b! Number of faces for each polyhedron.
~c! Perimeter and area of a polyhedron face.
~d! Perimeter, area and volume of a polyhedron.

The former two properties are known as typical topologi
properties and the latter two are the most widely used me
properties. These properties are distributed variables, a
natural consequence of disordered packing structure for e
sized particles. The following discussion will focus on ho
these properties vary with particle sized or packing density
C.

A. Topological properties

Figure 2 shows the percentage of polyhedra withf faces
for different sized particles. For the packing of 1000mm
particles (C50.605), the distribution is almost symmetr
with f 514 being the most prevailing value. Significant co
tribution also comes fromf 513 and 15. This is consisten
with the previous experimental and numerical studies of
packing of hard spheres@14,21,29#. When particle size or
packing density decreases, the distribution becomes bro
and more asymmetric. The percentage of polyhedra with
faces remains a constant~around 7%! for all the packings,
consistent with the previous study@30#.
TABLE I. Summary of forces acting on particlei from particle j. In these equationsE5Y/(12s̃2), R̄
5RiRj /(Ri1Rj ), js,max5ms@(22s̃)/2(12s̃)#jn @28#, h5max(h,hmin), Y is Young’s modulus,s̃ is the Pois-
son ratio,n&i j 5(Ri2Rj )/uRi2Rj u, gn is the normal damping coefficient,ms is the sliding friction coefficient,
js is the total tangential displacement,Ha is the Hamaker constant, andhmin is the minimum gap.

Force Symbol Equation Reference

Normal force Fi j
n

@
2
3 EAR̄jn

3/22gnEAR̄Ajn(vi j •n̂i j )#n̄i j
@24#

Tangential
force

Fi j
s 2sgn(js)msuFi j

n u$12@12min(js ,js,max)/js,max#% @26#

van der
Waals force

Fij
v

2
Ha

6

64Ri
3Rj

3~h1Ri1Rj !

~h212Rih12Rjh!2~h212Rih12Rjh14RiRj !
2 n̂i j @2,27#
2-2
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TABLE II. Averaged topological and metric properties of Voronoi polyhedra.

Size
~mm!

Packing
density

Edge numbers
per facea

Face numbers
per polyhedron

Perimeter of
polyhedron

Area of
polyhedron

Volume of
polyhedron

1 0.188 5.217 15.33 35.63 12.49 3.102
5 0.341 5.211 15.20 20.08 7.82 1.593
10 0.427 5.201 15.01 18.33 6.58 1.256
20 0.469 5.197 14.94 17.62 6.09 1.131
50 0.519 5.191 14.84 16.84 5.61 1.009
100 0.573 5.177 14.58 16.11 5.17 0.913
1000 0.605 5.167 14.41 15.72 4.95 0.865

aThe perimeter and area of face can be derived from the perimeter and area of the polyhedron.
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Figure 3 shows the percentage of faces withe edges as a
function of packing density. Parallel to the variation of t
face distribution in Fig. 2, the edge distribution also becom
broader and more asymmetric when packing density
creases. Vertices in the Voronoi construction represent
intersection of four Voronoi polyhedra~in random configu-
rations!. By the Euler relation, the average number of fac
per polyhedron̂f& and the average number of edges per po
hedron facêe& are linked@31#:

^e&56212/̂ f &. ~3!

The data listed in Table II confirm that our results stric
obey this relation. Therefore, either^e& or ^f& alone can be
used in a quantitative analysis. Figure 4 shows^f& as a func-
tion of packing density, indicatinĝf& increases as packin
density decreases. The results reported in the literature
also plotted for comparison, showing our results agree q
well with those obtained by Finney@14# and Jullienet al.
@32#. Note that our results also agree with those obtain
from the so-called Powell packing@22#, but are consistently
higher than the results obtained by Ogeret al. @22# using the
RSA algorithm and spatial dilution of the Powell packing

Different simulation algorithms represent differe
mechanisms of forming a packing and hence generate di
ent results. Ogeret al. @22# used both RSA algorithm an

FIG. 2. The distribution of number of faces per polyhedron a
function of packing densityC.
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molecular dynamics~MD! simulation to generate packing
with different packing densities. RSA packing is built s
quentially with the simple rule that the next particle, who
center is chosen at random, should not overlap the prev
ones. This algorithm can only generate packing with pack
density up to 0.38@33#. To obtain a homogenous packing o
higher packing density, Ogeret al. @22# adopted the MD
simulation where an initial packing is built using Powell a
gorithm, followed by ‘‘thermal’’ expansion. The particles i
the resulting packing are not touching and such a packin
therefore ‘‘nonstable’’ under external forces. On the oth
hand, the Powell packing@34# is built sequentially by adding
particle by choosing the site nearest to a plane surface
contact with three particles already placed. This model sim
lates the packing under gravity and is anisotropic. The res
of Jullienet al. @32# were obtained with the Jodrey-Tory~JT!
algorithm@35#, which is a collective algorithm. The JT simu
lation starts with a random distribution of points with inn
and outer radii. The inner radius defines the true density
the outer a nominal density. By moving the position of poin
and shrinking the outer radius, the overlaps among parti
are gradually eliminated. The final packing is formed wh
the true density equals the nominal density, and its struc
is isotropic@32#.

Obviously, the above algorithms are largely develop
from geometrical consideration and cannot simulate the

a FIG. 3. The distribution of number of edges per face as a fu
tion of packing densityC.
2-3
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namic process of a packing in reality. This problem can
overcome by DEM, which considers not only the gravity b
also the forces associated with granular materials. In fact,
present DEM simulation is specific to fine particles pack
under gravity. Therefore, different from the other simulati
algorithms, its packing density corresponds to particle siz
real physical parameter, not simply the stage of simulat
As shown elsewhere@9#, the change of particle size actual
represents the relative importance between the cohesive
der Waals force and the gravity. For coarse particles,
gravity is dominant and the packing density is 0.605,
typical poured packing density under the gravity. Gen
vibrating/tapping would increase packing density to 0.64,
measured by Finney@14#. Therefore, it is not surprising tha
the present results are comparable to those obtained with
gravity as the dominant force but different from the resu
from Ogeret al. @22#.

Aboav-Weaire’s law, which was first proposed by Abo
@36# with the original aim of understanding the mechanis
of the growth of polycrystals, describes the correlation
tween neighboring polyhedra, given by

f m~ f !5~^ f &2a! f 1^ f &a1m2 , ~4!

wherem2(5^ f 2&2^ f &2) is the second moment of the distr
bution of f, m( f ) is the average number of faces in neig
boring polyhedra, anda is the only unknown parameter i
the equation. This law has been found to be valid for vario
2D packings@37# and can be predicted from maximum e
tropy arguments@38#. There are also a few reports of 3
networks to which this law is approximately applicable@39–
41#. It can be seen from Fig. 5 that Aboav-Weaire’s law
also applicable to every packing in the present work. Fig
6 shows the values ofm2 and a as a function of packing
density. It is evident that asm2 increases,a decreases, which
is in agreement with the suggestion of Le Cae¨r and Delannay
@42#. In fact, Godre`che et al. @43# has reported thatm2
510.5 anda'21 for their packing, which is largely arbi
trarily built. It appears that their value is well connected w
the present correlation betweenm2 anda, based on the pack

FIG. 4. Variation of average face number of Voronoi polyhed
with packing density.
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ing results of fine particles. It is also interesting to note th
when packing density increases from 0.573 to 0.605, ther
a sudden drop in parametera.

B. Metric properties

In this section, we investigate the variation of metr
properties of Voronoi polyhedra, such as face perimeter (L),
face area (A), polyhedron perimeter (P), polyhedron sur-
face area (S), and polyhedron volume (V), with packing
densityC. For each propertyx, we consider its distribution
and average valuêx&. For the purpose of comparison, a
distributions are represented in terms ofx* (5x/^x&), the
reduced metric element with its average value as a refere
The applicability of Lewis’s and Desch’s law@44# will also
be examined.

Figure 7 shows the results for face area. It is obvious fr
Fig. 7~a! that the average face area^A& decreases with pack
ing density, approximately proportional toC22/3. There are
two peaks in the distribution of face areas for a packing@Fig.
7~b!#. The first one is very strong and realized whenA*

FIG. 5. Equation~4! applied to the packings with different pack
ing density.

FIG. 6. Parametersm2 ~L! anda ~m! in Aboav-Weaire’s law as
a function of packing density.
2-4
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tends to zero. The second one is obtained at a higher valu
face area and varies withC. In particular, this peak shifts
slightly towards higher face areas and gradually flattens
as the packing density decreases. For the packing of 1mm
particles (C50.188), the peak vanishes completely. Figur
shows that the average face perimeter decreases with pa
density, whereL}C21/3. Unlike the face area distribution
the face perimeter distribution has only one strong peak
becomes weaker and shifts slightly towards a higher f
perimeter as packing density decreases.

The change of the distribution of face area or perime
results from the change of proportion of ‘‘touching’’ particle
@45#. The area and perimeter of a Voronoi face between
touching particles must be greater than a certain minim
value because of the physical constraint that two partic
cannot overlap. As packing density decreases the numbe
touching particles~coordination number! decreases@9#. This
causes a decrease in the height of the second peak in the
area distribution and the peak in the face perimeter distr
tion. On the other hand, the loose open-tree structure of
particles gives large face areas and hence an increased

FIG. 7. Face area of Voronoi polyhedra as a function of pack
densityC. ~a! Average face area~units ofd2!; ~b! probability density
distribution.
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age face area and perimeter, as observed in Figs. 7 and
By definition, the average volume of polyhedra^V& is in-

versely proportional to packing densityC, i.e., ^V&
5(1/6)pd3/C. The present results suggest that the aver
perimeter^P& and surface areâS& of polyhedra are, respec
tively, proportional toC21/3 andC22/3, as shown in Fig. 9.
This relationship was also found by Ogeret al. @21# for their
packing. However, as discussed above, the previous
present results are quantitatively different as they are co
sponding to different physical systems.

Two parameters have been found to be useful in rela
these average values, given by

K15
36p^V&2

^S&3 ~5!

and

K25
1

3 S 4p

3 D 2/3 ^P&

^V&1/3, ~6!

g

FIG. 8. Face perimeter of Voronoi polyhedra as a function
packing densityC. ~a! Average face perimeter~units ofd!; ~b! prob-
ability density distribution.
2-5
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K1 is known as the sphericity coefficient of a polyhedro
andK2C22/3 is the average length per unit volume@46#. For
the RSA packings, Ogeret al. @21# found thatK1 andK2 are
independent of packing density and approximately equa
about 0.75 and 14.3, respectively. However, our results s
that bothK1 andK2 vary with packing density. As shown in
Fig. 10,K1 increases andK2 decreases with packing densit
Our results are consistent with those obtained by Jodrey
Tary @35# who focused on theK1-C relation, and well con-
nected with the face-centered cubic~fcc! packing, the theo-
retical maximum packing for monosized spheres. This tre
indicates that as packing density or particle size decrea
the average shape of polyhedron in a packing is less sp
cal.

Figures 11 and 12 show the distributions of the redu
polyhedron surfaceS* and volumeV* . Both distributions
become wider when particle size or packing density
creases. However, it is found that the peak value of the

FIG. 9. Average surface area^S& ~h, units ofd2! and perimeter
^P& ~n, units ofd! as a function of packing densityC. The lines are,
respectively, given by ^S&54.0078C22/320.6232 and ^P&
515.699C21/322.7488.

FIG. 10. Dimensionless ratiosK1 ~h! andK2 ~n! as a function
of packing densityC, wherej andm correspond to the fcc pack
ing.
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ume distribution shifts more substantially to lower volum
than that of the area distribution and the whole curve
comes more asymmetric with a quite long tail. As point
out by Montoro and Abascal@12#, the asymmetry observed i
a consequence of the fact that there is no upper limit for
maximum area or volume of a polyhedron, conversely, th
is a lower limit because the area or volume of each poly
dron must be larger than a certain value to contain a parti

For quantitative and general application, in the past va
ous attempts have been made to fit the distribution of a
and volume of polyhedra using statistical distributions, su
as Gaussian, Gamma, and Maxwell distributions@21,47–49#.
These distributions are either too complicated or unable
provide satisfactory results. As shown in Figs. 11 and
both the area and volume distributions can be well descri
by the log-normal distribution, given by

f ~x* !5
1

A2p~x* 2xmin* !s
exp$2@ ln~x* 2xmin* !2m#2/2s2%,

~7!

FIG. 11. The relative area distribution of Voronoi polyhedra a
function of packing densityC; lines are the results from Eq.~7!.

FIG. 12. The relative volume distribution of Voronoi polyhed
as a function of packing densityC; lines are the results from Eq
~7!.
2-6
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wherexmin* , as the lower limit, is assumed to correspond
the surface area (pd2) or volume (pd3/6) of a sphere,m is
theoretically related to the mean value^x& and standard de
viation s @50#, here given by m5 ln(^x&2xmin)2ln(^x&)
2s2/2. Both ^S& and ^V& can be calculated from the know
edge ofC. Figure 13 shows thats also varies withC, de-
scribed by a simple linear equation. Therefore, for fine p
ticles, the area and volume distributions of Voron
polyhedra can be well treated as a function of a single v
able, i.e., packing densityC.

Lewis’s law @51# and Desch’s law@52# are two empirical
relations which state that~in three dimensions! the average
volumeVf and surface areaSf of f faced Voronoi polyhedra
each vary linearly withf, given, respectively, by

Vf511
f 2^ f &

Kv
~8!

and

Sf511
f 2^ f &

Ks
, ~9!

whereKv andKs are parameters dependent on packing d
sity @22#. The two empirical laws have been observed
many cellular networks@37,53–55#. Oger et al. @21# have
shown that the two equations are also applicable to t
RSA packings. Rivier and Lissowski@56# tried to use the
maximum entropy method to show these linear relationsh
maximize the entropy under some constraints. However
pointed out by Chiu@57#, this maximum entropy approac
cannot derive or prove these laws. Actually, Drouffe a
Itzykson @54# showed that in 2D Lewis’s law is no mor
valid when the number of edgese.12. The present result
indicate that the above equations are only valid for lar
particles with higher packing density~d.50mm, C.0.5!,
as shown in Fig. 14. When particle diameter is less than
mm (C50.427), significant deviation from linearity can b
found. Fortes@41# reported that Lewis’s law is exact whe

FIG. 13. Standard deviations in Eq. ~7! as a function of pack-
ing density. The lines are, respectively, given byss520.3469C
10.3226 andsv520.5193C10.4489.
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Aboav-Weaire’s law is exact. However, the present stu
shows an opposite: Lewis’s law is not always valid ev
when Aboav-Weaire’s law is applicable.

IV. CONCLUSIONS

We have reported the results of the statistics of Voro
polyhedron for the packing of fine particles, simulated by
DEM-based algorithm. Typical topological and metric pro
erties have been quantified as a function of particle size
packing density. Our results show the following.

~1! As packing density or particle size decreases,~a! the
average face number of Voronoi polyhedra decreases,
distributions of face number and edge number beco
broader and more asymmetric;~b! the average perimeter an
area of polyhedra increase and the distributions of poly
dron surface area and volume become more flat. Both di
butions can be described by the log-normal distribut
whose parameters can all be related to packing density~c!
geometric ratiosK1 andK2 , given by Eqs.~5! and ~6!, de-
creases and increases, respectively.

FIG. 14. The relationship between~a! the volume and~b! the
area off-faced polyhedra and the number of faces for packings w
different packing densitiesC.
2-7



nt
nc
p
n
it-
b
b

y
n

R. Y. YANG, R. P. ZOU, AND A. B. YU PHYSICAL REVIEW E65 041302
~2! Different simulation algorithms represent differe
mechanisms of forming a packing of particles, and he
different physical packing systems. Consequently, the to
logical and metric properties depicted for the packing of fi
particles quantitatively differ from those reported in the l
erature for other packing systems although they all can
related to packing density. Conflicting results can also
observed. For example, contrary to the results of Ogeret al.
@21,22#, the present results show thatK1 and K2 vary with
r

l.

u

a

c

g

ie

,
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packing density; against the findings of Ogeret al. @21,22#
and Fortes@41#, although Aboav-Weaire’s law is generall
applicable to fine particles, Lewis’s law is not valid whe
packing density is low.
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